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Ascan be seen from Figure 1, the total assets of the Halyk Bank is a@dim8&slargerthan that of
KaspiBank, however thanarketcapitalizationfigures show theaather opposte picture. Namey, the
market cap of Kasfank is &dout 6.4 times highethanthat of Halyk BankThis differencés a result of
the digital disruption initiated b¥Kaspi Bank in the Kazakhsfabanking Sector.

Fig.2 Compaison ofthe Equityand MarketCapitalization

Theeffect of digital disruption is even more evident when comparingdfeity size with thenarket
cap for these two banks. It can be seen from Figure 2ttletmarket cap oHalykBank is almosthe
same as its equity, while the market capkakpiBankis more than 3Qimesits equity t atruly
remarkable resultThisisthe result of the market expectationfdiigher returns due to syergy effectsof
an innovativedigital ecosystem set up by Kaspi Bankichincorporages intothe ecosystenthe banking
services withFintechsolutions, electronic marketplace and loyalty platfoimmassociation witta large
number d merchants.

In order toevaluate the effec



In contrast



Fig.4 Compaison ofthe Operating Profiand Asset Turnover

The next step in ousinalysis will beéhe identificationof the reasonsbehind the 2.28 timeshigher asset
turnover of Kaspi Bankn comparisorto Halyk Bank. This analysis is presented in Figure 5, which gives
the breakdown of the asset turnover in terms of interestenuesand fees& commissions

The analysis of the financial results pretesl in Figure 5 shows th#éte interest revenue per asset of
Kaspi Bank is 1.63 times higher than that of Halyk Bank. This ¢agidsdlyattributed to the more
retail-oriented portfolio of Kaspi Bankand toalessr accenton mortgage loans thadre traditionally
characterizedvith lower APRs.

However, the more prominent piure emerges
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Fig. 5 Beakdown of the asset turnovento interestrevenues and fees& commissions

Even moreamazing is the fadhat the revenueof Kaspi Bangenerated from fees & commissioiss
almost exacthyequal toits interest income(as shown in Figure) Svhich isan extremelyrare casein the
banking industryThis fatindicates on the effectiveness of cressctoral cooperation and the synergy
effects derived from sutcooperation. The result the highprofitability of the ecosystendelivering
full-scaledigital services to large segmentsaistomersin a convenienand comfortable manner.

Fig 6

Fig. 6 Benefits of BigitalEcosystenModel
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A Generalization of the von Bertalany
growth Model using the BSDE Approach



with initial condition L(t



If the processX cannot make jumps larger than 1 (which is natural to
assume in this context), then solution of this equation is

Li=Li (1 E (X)) ©))

whereE/( X ) is the stochastic exponent of the procesX and the extreme
length L, is assumed to be a constant. Note thalt; de ned by this model
is increasing process and it coincides with the von Bertalan y growth curve
when X is a deterministic subordinatorX, = kt.

This approach (as all existing) has a drawback as a growth model, since
the asymptotic length of the sh is assumed to be a constant. This implies
that the variation of sh length tends to zero, which is not realistic, as it
would imply that all individuals should reach the same limiting size. In
order to overcome this problem it seems natural to assume that the extremal
size of a sh is itself a random variable, thus accounting for the individual
variability. Therefore, it is natural to use Backward SDE's (instead of the
forward SDESs) with the random boundary condition at the end equal to the
asymptotic length of a sh.

To generalize the von Bertalan y model when the extreme length; is a
random variable, let rst consider the simple case and only assume that

is a bounded random variable measurable with respect ©Y = _o F\,
whereW is a Brownian Motion and (F\V;t 0) is the ltration generated
by W.

We write this model as a solution of the Backward Stochastic Di erential
equation (BSDE)

Z t Ke Ks VA t
Yt = YsmdS'F ZSdWS, (6)
0 0
with the boundary condition
Y, = LI{n Y=L (7)

The solution process to equation (6)-(7) is
Le= E(L. jJFV)L e ] (8)
More exactly the solution of (6)-(7) is a pair (Y; Z)

Yi = Ly; Zi="'"(1 et )i



whereL; is de ned by (8) and ' ; is the integrand from the integral repre-
sentation of the martingale
Z t
E(I—l thW) = EI—l + ' des;
0

which can be immediately veri ed by the integration by part formula.
Note that, since (8) implies

EL,= EL,[1 €X' ]

the expectation ofL; follows the Von Bertalan y-type pattern with L, re-
placed byEL ; .

Remark that, if in (8) instead of exponential distribution function 1 ekt
we shall take general continuous distribution functiorG(t), then the process
L: = E(L1 jFY)G(t) will satisfy the BSDE

Z, v, Z,
Yi . G(s)dG(S) + . Z,dWs; 9

with the same boundary condition (7).

We shall generalize expression (5) (see Theorem 1) assuming that
is a random variable and consider this variable as a boundary condition at
in nity of a BSDE for L. driven by a subordinatorX and a Brownian Motion
W, independent ofX. The linear BSDEs derived in the paper di er from
classical cases by considering not integrable coe cients on the in nite time
interval. Under additional assumption that the extreme sizé.; ofa shisa
random variable measurable with respect to the-algebraF,Y generated by
the Brownian Motion W, i.e., when two sources of randomness, the random
individual variability (related with L, ) and the environmental randomness
(related with the processXy), are independent, the BSDE takes simpler and
more natural form (see Corollary 1).

2 The main results.

Let X = (Xt 0) be a Levy process with ane processt; > 0,
with zero Brownian part and with positive jumps (a subordinator). Let
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W = (W,



De nition.  Let V be the class of cadlag processeg;t 0), such that
the family of random variables (Y; 2 T) is uniformly integrable, whereT
is the set of stopping times.

Theorem 1. Let X be a Levy process with increasing paths (a subor-

dinator) and let X { < 1forallt 0. Assume thatL; is an integrable
F, -measurable random variable.



Z,

_ X & (X)X & B(X ) .
i TES(X) LES(X)*E (X)X s . (I E«X))?
- ‘1t B (X ) (dxds) “E(X) ds
r rRe LEs(X ) 1L Es (X )+E (X )X r (1 Es(X ))?
z.7 Z
_ ‘ H (s;X) . t E(X ) .
T R TE. )W mE s 19
By the It6 formula and (16) for anyr > 0
L+ L _
TE(X) TE(X) ()
y Z
_ 1 t 1
z CTE. O™ TE, 0™
+ th dl Es (X D")+[LA@ E(X D' LA E(X '] =
'z z v4
_ o 1 t 1 tLGE (X )
- L TE. 0O TE O™ @E. (X E®
212 H (s; X) 212 H (s; X) .
. Ls r(x)(ds;dx) r R+K(s;x)m((dl§24iﬁ)_0 11.955 Tf ()T /T

Z x1s



Since by (13) the left-hand side of (18) is a martingale on the interval
[r; 1] for any r > 0, the bounded variation part in (18) should be equal to
zero. Therefore,

X
A A = Lag— E(X )
r



By the boundary condition (12) and the Levy theorem, passing to the limit
ast!1 in (22) we obtain that

=Yy =Ly,

which by arbitrariness ofr > 0 and right-continuity of Y and M, implies
that Yy = Ly = E(L1 jF)[l E (X )]foranyt O.
Remark 1. If X



Since 0< X < 1;t



and substituting this expression in (20), we obtain that

Z.Z z
H (s; x) ! E(X )
A; = Le———— (dx)ds + Le————~—ds: 28
T, R L H(s;x)( ) o 1 EX) (28)
By de nition of H
H(s;x) _ XE(X ) |
1 H(@s;x) 1 E (X))
therefore
‘i XEs(X )
A = Ls

0 Rs+
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wherew = (wR;w ) is a standard two-dimensional Wiener process, de-
ned on complete probability space (;F;P), F" = (F ")o¢r is the P-
augmentation of the natural Itration F" = (ws; O s t),0 t T,
generated byw, f () is a continuous one-to-one positive locally bounded
function (e.g.,f(X)= €), =( 1;:::; m), m 1, is a vector of unknown
parameters, and’, 0 <" < 1, is a small number. Assume that the system
(1.1) has an unique strong solution.

Suppose that the sample path ys)ost comes from the observations
of process ¥)os: With distribution B" from the shrinking contamination
neighborhood of the distributionP" of the basic proces¥ = (Ys)os¢ . That
is,

dB’ e

gpr I FU' = BONT); (1.2)
where N" = (N )ost is a P -square integrable martingale & (M) is the
Dolean exponential of martingaleM .

In the di usion-type processes framework (1.2) represents the Huber gross
error model (as it explain in Remark 2.3). The model of type (1.2) of con-
tamination of measures for statistical models with Itration was suggested



2 Construction of CULAN estimators

2.1 Basic model

The basic model of observations is described by the SDE
dYs = a(s;Y; )ds+ "dws; Yp=0; 0 s t (2.1)

wheret is a xed number, w = (Wg)ost IS a standard Wiener process
de ned on the Itered probability space (; F;F = (Fs)ost ;P) satisfying
the usual conditions, = ( q1;:::; m), m 1, is an unknown parameter
to be estimated, 2 A R™, A is an open subset oR™, ", 0 <" 1,
is small parameter (index of series). In our further considerations all limits
correspond to" ! 0.

Denote by (Ci; B;) a measurable space of continuous on; [ functions
X =(Xs)ost With -algebraB;= (X :Xs; s t). Put Bs= (X :Xy; U
S).

Assume that for each 2 A, the drift coe cient a(s;x; ), 0 s t,
x 2 C; is a known nonanticipative (i.e.,Bs-measurable for eacls, 0 s )
functional satisfying the functional Lipshitz and linear growth conditionsL.:

Z

5
1 1

jas;xh; ) aesx% ) Ly jxE o x3jdkg + Lgxt o x3;
L z, O
ja(S; X, )J L1 (1 + quj) dk, + L2(1 + szj);
0

whereL; and L, are constants, which do not depend on, k = (k (S))ost
is a non-decreasing right-continuous function, 0 k(s) kg, 0<ko < 1,
x1;x? 2 C;.

Then, as it is well known (see, e.g., Lipster and Shiryaev [2]), for each?
A, the equation (2.1) has an unique strong solutiolY () = (Y ( ))ost
and, in addition (see Kutoyants [3]),

supjYs( ) YO( ) C"supjwsj P-as.;
Ost Ost

with some constantC = C(L 1;Ly; ko;t), where YO( ) = (Y2( ))os: is the
solution of the following nonperturbated di erential equation

dYs = a(s;Y; )ds; Y,=0: (2.2)

3
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Change of initial problem of estimation of parameter by the equivalent
one, when the observations are modelled according to the following SDE

dXs = a(s;X; )ds+ dws; Xo=0; (2.3)

wherea:(s;x; )= ta(s;"x; ),0 s t,x2C, 2A.
Itit clear thatif X" ( )= (X.( )ost



is well-de ned, and moreover, uniformly in on each compact,
P* im0 )= 190 ); 2.7)
where Z,
120):=  asYO( ) asYO( ) )1%ds:
0

For each 2 , introduce the functional -(s;x; ):= % (s;"x; ) and
matrices . ( )and .( ):
VA t

e ): (X5 ) +(s; X )]%ds; (2.8)

0
Zt

e (X ) (X5 Na(s; X )]%ds: (2.9)

0

Then from (2.6) it follows that uniformly in ~ on each compact,
P’ ”mo--z ()= () (2.10)
PT lim"2 ()= () (2.12)

where the matrices ,( ) and ,( ) are de ned as follows:
Z t
0l )= (S:Y°( ) )L (s:Y°( ); )1%ds; (2.12)
2z,
w( )= (s:Y°( ) )las; Y°( ), )]st (2.13)
0
Note that, by virtue of (2.4), (2.5) and a 2 , matrices given by (2.8),
(2.9), (2.12) and (2.13) are well de ned.
Denote by o the subset of such that foreach 2 ,and 2 A,
rank ,( )= mandrank ,( )= m.
Assume thata2 . )
For each 2 ,, dene a P’-square integrable martingaleL, ( ) as
follows: Z .
L, (X; ):= U X5 )dX, ar(u; X )du): (2.14)
0
Now we give a de nition of CULAN



De nition 2.1.  An estimator ( ( )0 = ( 1xiiii mi)%0s 2 o IS
called consistent uniformly linear asymptotically normal (CULAN) if it ad-
mits the following expansion:

= L O L () re () (2.15)
where uniformly in  on each compact,

P lim " Lro()=0: (2.16)

It is well known (see Kutoyants [3]) that under the above conditions,
uniformly in ~ on each compact,

Lf* (¢ )iP'g!" N@OW( ;)

with
ViC s )= o o0 ol 1) (2.17)

whereL( | P) denotes the distribution of random vector , calculated un-
der measureP, symbol \I* denotes the weak convergence of measures,
N (0; Vi( ; )) is a distribution of Gaussian vector with zero mean and co-
variance matrix Vi ( ; ).

Remark 2.1. In context of di usion type processes, théM -estimator ( ;| )-o
is de ned as a solution of the following stochastic equation:

Lo (X5 )=0;
whereL,” (X: )is dened by (2.14), 2 .

The asymptotic theory of M -estimators for general statistical models with
Itration is developed in Toronjadze [4]. Namely, the problem of existence
and global asymptotic behaviour of solutions is studied. In particular, the
conditions of regularity and ergodicity type are established under whici -
estimators have a CULAN property.

For our model, in case whe = R™, the su cient conditions for CULAN
property take the form:

(D) foralls,0 s t,andx 2 Ci,the functionals (s;x; )anda(s;x; )
are twice continuously di erentiable in  with bounded derivatives satisfying
the functional Lipshitz conditions with constants, which do not depend on.



(2) the equation (w.r.t. y)
Z t
iy )= . YO @Y ) ) as; YO )y)ds=0

has a unique solutiony =
The MLE is a special case oM -estimators when = a.

Remark 2.2. According to (2.7), the asymptotic covariance matrix of MLE
()0 is [I2( )]* . By the usual technique one can show that for each

2A and 2 o, [I2( )Y  M( ; ), see (2.17), where for two symmetric
matrices B and C the relation B C means that the matrix C B is
nonnegative de nite.

Thus, the MLE has a minimal covariance matrix among alM -estimators.

2.2 Shrinking contamination neighborhoods

In this subsection, we give a notion of a contamination of the basic model
(2.3), described in terms of shrinking neighborhoods of basic measufes,
2 A;" > 0g, which is an analog of the Huber gross error model (see, e.g.,

Hampel et al. [5] and, also, Remark 2.3 below).

Let H be a family of bounded nonanticipative functionah : [0;t] C;
Al R!such that for all s 2 [0;t] and 2 A, the functional h(s;x; ) is
continuous at the pointxy = YO( ).

Let foreachh2H, 2A and"> 0,P"" be a measure onG;; B,) such
that

1) P



We call (P )..o a shrinking contamination neighborhoods of the basic mea-
sures (P)-o, and the element P"").., of these neighborhoods are called
alternative measures (or, simply, alternative).

Obviously, for eachh 2 H and 2 A, the processN™" = (N")gs;
de ned by (2.19) is aP"-square integrable martingale. Since under measure
P" the processw = (Ws)ps: de ned as

S
Ws .= X a(u;X; )du; 0 s
0

is a Wiener process, by virtue of the Girsanov Theorem the process:.=
w+ hw; "N “"i is a Wiener process under changed measu®é". But by the

de nition, Z.

W = Xs (@ (u;X; )+ "he(u; X; ) du;
0
and hence one can conclude th&"" is a weak solution of SDE

dXs=(a(s;X; )+ "h.(s;X; ))ds+ dws; Xo=0:



Thus 4P
pm . .
P - E.("n N™) (2.20)
and the relation (2.18) is a direct analog of (2.20).

2) The concept of shrinking contamination neighborhoods, expressed in
the form of (2.18), was proposed in Lazrieva and Toronjadze [1] for more gen-
eral situation, concerning with the contamination areas for semimartingale
statistical models with Itration. O

In the remainder of this subsection, we study the asymptotic properties
of CULAN estimators under alternatives.

For this aim, we rst consider the problem of contiguity of measures
(P";h)">0 to (P")">o .

Let ("Wn1, "n #0,and (n)n1, n 2 K, K A is a compact, be
arbitrary sequences.

Proposition 2.1. For eachh 2 H, the sequence of measurg® ") is
contiguous to sequence of measuré® ), i.e.,

P™™M /(P

Proof. From the predictable criteria of contiguity (see, e.g., Jacod and Shiryaev
[6]), it follows that we have to verify the relation
n 0
. 1
i i n;h n - -0
Nll!ET‘I IlrrnllsupP "oy > >N 0; (2.21)

wherehf(3) = (h 2(3))ost is the Hellinger process of ordet.

By the de nition of Hellinger process (see, e.g., Jacod and Shiryaev [6]),
we have

Z
1 1 o 17t .
he 5 =he SPRNPY =g ISX w)ds;
and sinceh 2 H, and hence is boundech{‘(%) is bounded too, which provides
(2.21). u

Proposition 2.2. For each estimator( t )0 With 2 o and each alter-
native (P"M").so 2 (P"M").so , the following relation holds true:

Lf (7 YIPTg™ N o 1 B(h; HVe( s
where Z,
b(;h; ):= (5;Y°( ); dh(s;YO( ); )ds:

0

26



Proof. Proposition 2.1 together with (2.16) provides that uniformly in on
each compact,
P lim"tr. () =0;

and therefore we have to establish the limit distribution of random vector
[ o( )1* "L, under the measures (P") .

By virtue of the Girsanov Theorem, the procest, ( )= (L " ( ))ost
is a semimartingale with canonical decomposition

LS ()=ES ()+bs(;h; ), 0 s (2.22)

whereB, ()= (B ( ))os: isaP""-square integrable martingale, de ned
as follows:
Z S
B (X; )= (U X5 )AXy (@ (uiX; )+ he(us X ))du);
0

and
b';S(



Initially, it should be stressed that the bias vecto®



Therefore

Di(;h; )= D(8h; )= jo(Ch; )iZ+tr o ) (2.24)
Denote byH, a set of functionsh 2 H such that for each 2 A,
Z t

jheY°( ) dids
0
wherer, r > 0, is a constant.

Since, for eachr > 0,

supjbi(§h; )i const:(r) sup j&(s;Y°( ); )i
h2H , Ost

where constant depends on, we call the function € an in uence function of
estimator ( , )-o and a quantity

¢ ()= sup j&Gs;YO( ) )i
Ost
is named as the (unstandardized) gross error sensitivity at point of esti-

mator (  )wo .
De ne

oc — r



Theorem 2.1. Assume that for given constant there exists a nondegenerate
m m matrix A;( ), which solves the equation (w.r.t. matrixA)
YA t
£(s YO ) Hlas; YO( ) )]s = Id: (2.28)
0
Then the function &¢¢ = he(A.( )a) solves the optimization probleni2.27).

Proof. (See, e.g., Hampel et al. [5].)

Let A be an arbitrary n; - m matrix.

Since foreach 2 ,, ()%= Id, afal®= 19 ) (see (2.7)) and the
trace is an %dditive functional, we hzave

(  Aa)( Aa)’= ° A A% AI%)AC

(here and below we use simple evidentgotations for integrals).
Therefore instead of minimizing of tr %we can minimize
z z

to( Aa( A2 | Aal

and it is evident that a function h,(Aa) minimizes the expression under
integral sign, and hence the integral itself over all functions 2, satisfying
(2.26).

At the same time, the condition (2.25), generally speaking, can be vio-
lated. But, since a matrix A is arbitrary, we can chooseA = A ( ) from

(2.28) which guarantees the validity of (2.25) with = 2l ]

As we have seen, the resulting optimal in uence function . is de ned
along the proces¥ °( ) = (Y 2( ))ost , which is a solution of equation (2.2).

But for constructing optimal estimator we need a function .(s;X; ),
de ned on whole space [0]t C; A .

For this purpose, de ne .(s;x; ) as follows:

s, )= 2O (six; )= ho(A( )_t »whichis asolut679 -x1.996r51



From (2.9), (2.11), (2.28) and (2.29) it directly follows that
z t
()= P dm® ()= o(sYO() )@sYO( ) ) s = ld:
’ 0

Besides, for each alternative (P")-o, h 2 H, according to Proposition 2.2,
we have
L (¢ )iP™g!" N@( oih iVi( o)) as ! 0;

where Z,
b( h )= ; ¢(S;YO( ) Hh(s;iYO( ) )ds;

andVi( i )= ().
Hence, the risk functional for estimator (; )-o IS

Di( o;h; )= jb( h; )i*+tr ¢ h2H;
and the (unstandardized) gross error sensitivity of ({" )0 IS
)=supj (sYO( ) )i
Ost

Thus, we may conclude that (t;" )-so IS the optimal B -robust estimator over
the class of estimators (; )=o, 2 o in the following sense: the trace
of asymptotic covariance matrix of (| )-o is minimal among all estimators
( { )=o with bounded by constantc gross error sensitivity, that is,

w0 () wo( ) forall 2 o

Note that for each estimator ( ; ) and alternatives P"")-o, h2 H,
the in uence functional is bounded by cons{r) c. Indeed, we have for
2 0;c»
supjb(;h; )j consti(r) c:= C(r;c);
h2H |

and since from (2.24)

inf  sup
2 ochoHe2n( 3 h; )= ;C



over all constantsc, for which the equation (2.28) has a solutioA ( ). This
can be done using the numerical methods.

For the problem of existence and uniqueness of solution of equation (2.28),
we address to Rieder [7].

In the case of one-dimensional parameter (i.e., m = 1), the optimal
level ¢ of truncation is given as a unique solution of the following equation
(see Lazrieva and Toronjadze [1])

Z t Z t
o= s YRO) )T as Y ) )ds o ([as YR ) IG ) ds:
where K]2 = (x” b)_ a and the resulting function
(s;x; )=[as:x; )S; 0 s t x2C;
is ( o;H;) optimal in the following minimax sense:
supD¢( ;h; )=inf supD.(;h; )
2 h2H,

h2H

Appendix

Important feature of the stochastic volatility model is that volatility process

Y is unobservable (latent) process. Clear that full knowledge of the model
of the processY is necessary and hence one needs to estimate the unknown
parameter =( q1;:::; m), m 1.

A variety of estimation procedures are used, which involve either direct
statistical analysis of the historical data or the use of implied volatilities
extracted from prices of existing traded derivatives.

Consider the method based on historical data.

<t® =y m_ax[tj('l)1 tj(”)] I O0asn! O, calculate the realization of
J

yield processR; = ; % and then calculate the sum
Xl
Sn (t) = Rtj(rl)l Rtj(n)

It is well known (see, e.g., Lipster and Shiryaev [2]) that

t
Sa(t) I 2ds asn!1:
0

15
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Since 2(! )= f(Y,) is a continuous process, we get

. F@E+t ) R
c(t) =lim ,

Rt
whereF (t;! )= | (! )ds.
Hence, the realization ¥;)ott Of the processY can be found by the
formulay,=f*( 3,0 t T.
We can use the reconstructed sample path{y 0 t T, to estimate
the unknown parameter in the drift coe cient of di usion process Y.
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EDTECH SOLUTIONS FOR TRAINING ENGAGEMENT
IN CLIP CORPORATE CULTURE

Dina Aslamazishvili
PhD in Social Philosophy, Professor,
Scientific Group Member, Business School,
Georgian American University,
0160, Georgia, Thilisi, Aleksidze Street 10

Abstract

Nowadays organizations are facing challenges which cannot be resolved by the traditional managerial solutions.
EdTech area has a relatively short history, it is a sphere in dynamic development process. Learning and
Development practices in organizations tend to integrate and use the novelties from different training platforms.

It stared with Excel, Emails and Google Docand today is present by complex solutions in Training Management
Systems. The dynamism, uncertainty and high competition in business organizations make them adapt their
learning systems and corporate cultures. From the comparative values organizationtilireuframework of
Robert E. Quinn and Kim S. CameronFRPSDQLHYVY DUH PRYLQJ WR pFOLSY FRUSRUDW

Al-based and scenaribased training system approaches.

Key words



More service style by leaders
Human resources development urgency (as reskilling, upskilling, etc.)

Scaling of the learning programs (EdTech development)

= . A _a

HR Branding and talent management (retaining talented employees with the help of

positive organization’s image)

Moreover, in organizations as reflecting overall culture development trends, there is a
tendency to simulation of reality to become reality (simulacra and simulation of Jean
Baudrillard?). In this system, the symbolic leadership and generally symbolic meanings play a
greater role in managerial effectiveness. It is not enough to plan, organize, lead and control. It
is a demand for managing intangible elements in communication, team work, relationships
and meanings at work (purpose, mission, goals, vision, adjusted to employees needs, or at least

in the average fit).

Corporate University for Scaling Learning and Development

In the light of the new meanings and directions, Corporate University takes a greater space in
corporate Learning and Development programs (see Exhibit 1). Employee Learning usually
considers newly hired employees (to train for the job and position and to teach standards) and
current employees to keep them up-to-date (competences development; changes in conditions;
changes of specific or general environment; company changes, talent pool/talent
management). Moreover, the whole L&D System is set to promote high performance (Exhibit
2). The skills are divided into two categories: hard and soft skills (Exhibit 3), which means that
the approach to Learning and Development and the selected solution should be useful for

developing both clusters of skills. They have some specificity and need variable m
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Exhibit 3

Corporate University resolved this demand and implements it in the complex strategic



Exhibit 4

EdTech Market Today

EdTech is the practice of introducing information and communication technology tools into
the classroom to create more engaging, inclusive and more individualized learning experience;
hardware and software to enhance the quality of learning experience and get to high
performance results. EdTech market has been permanently developing, as the demand is high.

Nowadays it is present by the following services (Exhibit 5):

LMS (Learning Management Systems) for asynchronous learning (e.g. Moodle)
Online whiteboards (e.g. Miro and Mural)

Engagement tools (for quizzes, polls, etc., as e.g. Mentimeter, Kahoot)
E-learning (E-learning courses, as e.g. Gurucan, CourseLab)

LXP (Learning Experience Platform)

Video Conferencing and Webinars (as Zoom, Webex, MsTeams)

VA and AR (Artificial Intelligence systems)

= —a _—a _—_a @ _—_a _a _a _2

TMS (Training Management Systems) for complex solutions (blended learning), (as

Lanes, AdobeConnect)
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Exhibit 5

The major two complex and effective systems for corporate learning (not freelance trainers,
but for organizations) are LMS and TMS. As well, video conferencing (Zoom, MsTeams and
Webex) are actively used for the corporate learning, but are less comfortable, and needs a lot

of additional solutions and integrations (with engaging tolls for example).

LMS started with the elementary file drives, E-mails, Excel and Google docs, and nowadays is
present as a complex asynchronous learning solution, or integrating video conferencing

services for synchronous learning programs (Exhibit 6).






Training Management Systems are developing the instruments and mechanics integrated in
one platform to enhance the engagement and allow scenario training scaling. The main

challenges for virtual learning and development are:

Team work clarity and standards

Scaling

Engagement

Measuring learning outcomes
Optimizing the work of L&D Team
Adapting the content for virtual learning
Balancing workload

Continuous improvement

= —a _—_a _—_a @ _—_a @ _—_a _a _a _2

Feedback and assessment

The results with Training Management System can be impressive. For example, with Lanes

platform # (some cases examples).

In Banking: Training sessions reduced to 3 hours, scalability enhanced, life-long learning

culture and retention, new program design reduced to 1-2 days (compared to 2 weeks).

Healthcare company: cost training per employee reduced from $700 to $7, expertise developed

company-wide easily, improved engagement and learning results.

Fast-food chain: 23% higher engagement rate, waiting period for leadership dramatically cut
(from 6 months down to 3 days), expenditure on company-wide mandatory training has

decreased by 39%.

Nowadays the leaders among TMS platforms worldwide are AdobeConnect® and Lanes®

Exhibits 8-10).



Exhibit 8 AdobeConnect

A Adobe Digital Learning Solutions Adobe Connect  §i o > L

Exhibit 9 Lanes

i-l;_‘ TN Kl T D I\WI ARE €]

Exhibit 10 Lanes

Blog fvents Products Academy Company







2 G. GIORGOBIANI, V. KVARATSKHELIA, M. MENTESHASHVILI

2. Main Result

Investigating the Subgaussian random elements with values in Banach spaces
and analyzing the results of [2], R. Fukuda [3] came to a result, which is
improved in our Theorem 2 stated below.

Let (; A;P) be a probability space, : ! R?! be a real random variable
and E be a mathematical expectation symbol.

Theorem 2. Let p>gq>0 and for some C 1
fEj g™ CfEj j%"™< 1: 1)
Then for anyr;s, 0<r;s p, we have
& j'g™ C fE °g";
where
0; if O<r s p;
1; if g s<uy
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ON ONE CONNECTION BETWEEN THE MOMENTS 3

Now the case ks <r g is left, which can be reduced to the previous
one.

Note that applying Kahane's inequality, Fukuda in his paper [3] as a constant
C forr = pands =1 obtained the expression

CU g B (1= + 1) @)

whereB(; ) is a beta function.
For the same values of the parameters & p;s= 1), the constant obtained
from Theorem 2 is equal to(
C; if 0<qgq 1;
C = ap 1) ) (5)
Cra; if 1<qg<p:
Using the computer program MAPLE we compared the values of (4) and (5) for
di erent values of the parametersp and g, and it was found that the constant
obtained by Theorem 2 is better, although it needs analytical con rmation.
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The Impact of Promotions on Consumer Behavior

Tamar Kvirikashvili
Business schooleorgian American University
Business school, Grigol Robakidze University

ABSTRACT

In a high velocity environment retail market is growing all over the world. Retailers use all types
of promotional activities in order to be differentiated in the market. As a result of population and
economic growth, retailers started to widerithe application of various marketing in order to
influence consumers. Peattie and Peattie (1994) stated that marketing activities are usually
specific to a time period, place or customer group, which encourage a direct response from
consumers or marketingntermediaries, through the offer of additional benefits. One of these
activities is to usgoromotions(such asdiscounts,buy one get one free, coupons, rebates, contests,
cashback offers and loyalty programs) and they directly influence individual tgive quick
decision and to finalize purchasing process. Since promotions are one of the most noticed
marketing activities, promotions can greatly impact any company's market share and
sustainability. It is therefore important to understand which promotionsonsumers prefer and

also the effect of promotions on customers and their behavior. (Peattie, 1994)

According to the American Marketing Association, as noted by Kotler and Keller, marketing can
EH GHILQHG DV 3DQ RUJDQL]DW L R3¢ ®r ckeqtifdVdoRrQuUzicy, Bnd/ H W

delivering value to



FRPSDQ\fVY PHVVDJH DFURVV WR WKH FRQVXPHU 7KH IRXU P
promotion, public relation and direct marketing (Juneja, 2018
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o There are discounts when products are temporarily offered at a lower price. This form of

promotion is used by organizations in order to inease sales and attract new customers.

0 Systems that allow customers to obtain a refund of some of the purchase price is known as
cashback When cashbackare offered immediately at the time of purchase, this is an

instant rebate. An organization uses thi



After gathering information, it is evaluated against a consumer's wants, needs, preferences, and
financial resources, which are available for purchase.

At the purchase stagehe consumer will make a purchasing decision. The ultimate decision may
be based on factors such as availability or price.

At the postpurchase evaluation stage, the consumer will decide whether the purchase actually

satisfies her needs and wants (Kotl&003)

The research, which is used in this study, is descriptive in its nature. It can be explained by
particular situation, telling some sort of things or some sort of noticeable facts. Research that
explains the present situation instead of interpretirgnd making judgments is descriptive research
(Creswell, 1994). The core purpose of descriptive research is to establish the accurateness of
developed hypothesis that reflect the present position. This kind of research gives knowledge
about the current sceario and concentrate on past or present for an instance in a community

guality of life or customer attitude toward any marketing activity (Kumar, 2005).

The resarch was conducted in Carrefoumwith a Carrefour mnsumer.Various products are the
core busness of the supermarket Carrefour. Their product offer is based on a number of
unchanging principles, which are a broad selection, the lest prices, the highest quality and

compliance with manufacturing conditions+



The results of the consumer demographic datas



Brochures positionedn front of supermarkets are also very likely to causalesThis is due to the
fact thatconsumerdike to check which products are on promotion at the time of their visit to the
supermarket. Although consumersmay have an intended shopping listvhile visiting the
supermarket, the discovery of product under promatn always pushes towards spending money

on discounted items.

In case of promotion, which enableonsumergo save moneythey



Demonstrations are not very influential with regards to purchasing behavior but are more likely



A stochastic model of predator-prey
population dynamics

T. Kutalia and R. Tevzadze

Abstract

Abstract. We present results of an analysis for a randomized
three-dimensional predator-prey model representing the dynamics
of wolf-deer interactions.

1 Introduction

We study a predator  { prey stochastic model (initiated by R. Chitashvili)
in discrete and continuous time. For this we define the transition proba-
bilities and Markov chain realization by the random difference schemes
as well as the systems of stochastic differential equations. We show that
in case of scaling, the solution of the system approaches the solution of
the equation of ordinary differential equation. We present the graphs

of these solutions for the specific parameter set and different initial
conditions. Graphs illustrate the equilibrium points which the system
approaches in infinite time.

2 The discrete time Model

Let us consider two populations: deer and wolves and assume that deer
divide into the group of strong and week ones. Denote by X;V;Z the
number of strong deer, week deer and wolves respectively.
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N Let  (X;y;2); (Xy;2); (Xy;2); (X;y¥;Z) 2 N2 beintensity of tran-
sitions
Gyiz)!t (x Liyigixyiz)! (xy  Lzikyiz)! (Kyiz 1)

and = *+ ; =



where ", is i.i.d. with uniform distribution, define Markov chain with
such transition probabilities. Indeed

I:)(Xn+1 =Xn LiYe = YniZp = anxn;Yn;Zn): I:)(Xn+1 = Xn 1an;Yn;Zn)
= P(I ("n<p* (Xn:Yn:Zn)) I(p+(Xn;Yn:Zn))" n<P* Xn;Yn:Zn)tp (Xn;YniZn)) = 1)JX n;Yn;Zn)
= P("n <p (Xn;Yn;Zn)jxn;Yn;Zn)z P (Xn;Yn;Zn)

and at cetera.
Assume that the share of strong deer increases proportionally to

fraction of strong deer pairs into all deer pairs, i.e. by intensity (x +
2 .. . . 2

y)(va. Similarly for week deers we get intensity x+y)(1 (Xf—)z). The

mortality of strong and week deer is defined as d°x + e’xz; d'y + e'yz

respectively. We define the rate of fecundity and mortality of wolfs as:
. 02?
z + qx+vy) z+ % Therefore

2
+ . . —_ . . . —_ S .
(X,y,Z)— X+y’ (X,y,Z)—(dX+ eSXZ),
b (x+y)?2ox® o\ — (W .
xyiz)= Ty Kyiz)=diy+ elyz);
2
+ . — . - —_ 0 z
(cyiz)= 2+ Wy (yin)= 2+ G
We take € = d° = 0:2; & = d¥ = 0:5; = : 0=1:0=1 and

(Xo0; Yo; Zo) = (8 8;8). We graphically present the solution of (1) below
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Figure 1: graph

3 The continuous time Model

Let N (duds) be the Poisson point process driven by Leb
dudsand N'(duds) = N (duds) duds. Then the Mark
uous time is defined by the SDE

ZtZl
Xi = Xo+ (T *xe e ze ) 1O s o
Yi = Yo+ (X s ¥ iZs Yus(+ *)Xs iYe
0 0

I (v o9)%s iYs Zs Dus(+)X s Ys iZs )N
z 2,

Z Zo+ (T )x o Y iZs Jus(++  +
0 0

I ((++ s s s JU(+4)Xs )



Then

Xy = Xo+ ( "(X



In our model

+ X2 S S
—m, —(dX+eXZ),
Lo (X+Y)oXE o Wy Y.
= r Y ;o =(d"Y + 'Y 2);
0 Zz
= Z + X +Y) = Z + :
1 ) X+Y
Therefore
X2
Xi = X + eeXZ t+ dL(t
dX; X+ Y d eXZ) dt+ dL(t)
X +Y)2 X2
Y, = Y + e"Y Z + dM
ady; X+ Y (d e ) dt+ dM(t)

z?
— 0 .
dz,= Z + X+Y) Z+ Y dt + dN(t):

In deterministic case one obtains

X2
X = (d°x + €°xz);
X+y
X+ X w
= - -7 : 2
Y X+ (d%y + €"y2); (2)
0 2

X+y

Such type of population model was studied in [1].
Remark. If y= X+ y then

X2

X = v x(d® + €°z);

vy = y(1 d¥ e'z)+ x(d"+e"z & €2),
22

z = z+ o

z = ( ) ¥ v
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In particular case of parameters we have

2

X = 0:2x(1 + 2);
X+y
_ (x+y)? X2 .
y = T 05y(1+ Z),
2
2= Xy o

orfor (X;y;2)=(X;X+Y;2)
X2
X = — 0:2x(1+ 2);
X_ v ( )
v = ¥ (0:5¢ 0:3x)(1+ 2);
ZZ

Z =% ;

®3)
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Figure 2: phase portrait of system (3)

The solution of

X2
0 = 0:2x(1 + 2);
X +
(x+y)? x?
= 5