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into digital channels. Take the example of two leading banks in Georgia: the retail offloading ratio of TBC 
Bank was 97% in 2021 [6], while the share of retail transactions through digital channels 



increased car ownerships in the USA, which increased the mobility of shoppers. With the increased 
mobility, it became a lifestyle to combine shopping, entertainment and leisure in one trip as it was 
convenient for consumers. The evolved lifestyle has manifested itself in the changed consumer 
behavior. The retailing sector responded to this change with the emergence of shopping malls by means 
of providing all services in one place in a manner convenient for consumers.   
 



Now we are in the position to answer the main question posed in this article: does the value proposition 
of the financial services providers (including Neobanks) match the changing purchasing habits of 
Consumers? If we agree that the value for a modern-day consumer is “convenience” by means of 
receiving virtually all services in one place (i.e. in a mobile phone), then the financial service providers 
should respond by creating the respective ecosystems. Is this the case?  
 
The answer is No. Today, the financial services industry is fragmented into digital payments, loyalty 
platforms and neobanking/digital banking services to mention just a few. In addition, there are 
numerous companies offering E-commerce services/marketplaces, which increase the degree of 
defragmentation from the consumers’ perspective. All these services are facing some problems when 



 
Fig. 5 Comparison of loyalty platforms



 
The resulting ecosystem is shown in Fig.6. The business logic behind such ecosystem is the following: 
digital payments functionality will generate a large base of participating companies, as these companies 
look for reducing the transaction fees. Loyalty platforms will generate a large customer base and provide 
customer behavioral information to the participating banks (with the consent of customers). Banks will 
score the customer behavior information and will embed their offerings into the marketplace. As a 
result the banks will be able to issue online loans for consumers shopping at marketplace. The 
customers of the ecosystem will receive all the above mentioned services in one place (convenience). 
The resulting ecosystem will be profitable due to high CLV of banking products and services. 
 
Summary 
In order to summarize the future development of neobanking in just a few words, it can be stated: 
neobanking is the future. A lot of new financial ecosystems will emerge, some of them in partnership 
with the existing banking institutions. The examples of such initiatives can be seen everywhere: Visa and 
Mastercard are becoming digital, Apple and Amazon are incorporating the financial services, Paypal is 
extending its services into the loyalty industry, even Twitter and Google are seeing themselves as 
payment service providers. It only remains to see how these neobanking ecosystems will be reshaped in 
the coming decade.  
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The importance of venture capital in innovative investment projects 
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Abstract 

Innovation makes it possible to produce more products with less materials and resources, 

which in turn leads to economic growth. The main problem of financing innovative projects 

is the high risk of returns and long payback. Most of these projects do not have enough 

guarantee funds, their resources are limited, and only their own ideas and technologies are 

the backbone. Due to the high risk of innovative projects, it is necessary to use venture capital 

to finance them. 

 

Key words: Venture capital, venture business, innovation, "valley of death". 

 

* * * * * 

In the modern world, as the population grows, the role of technological innovations in 

meeting human needs increases, as they change the world economy and contribute to the 

economic growth of countries. 

Innovation and entrepreneurship are the kernels of a capitalist economy. New 

businesses, however, are often highly-risky and cost-intensive ventures. As a result, external 

capital is often sought to spread the risk of failure. In return for taking on this risk through 

investment, investors in new companies are able to obtain equity and voting rights for cents 

on the potential dollar. Venture capital, therefore, allows startups to get off the ground and 

founders to fulfill their vision. 

Venture business involves financing new ideas, progressive scientific and technical 

developments and bringing them down to a suitable level for sale, i.e. commercialization. 

Venture business requires a lot of knowledge, a lot of money, and a lot of guts, but if 

successful, it can be hugely profitable. This type of business does not actually exist in our 

country, because we do not have the experience of working with new technologies and risky 

investments, as well as the financial infrastructure. 

Venture capital (VC) is a form of private equity and a type of financing that investors 

provide to startup companies and small businesses that are believed to have long-term 

growth potential. Venture capital generally comes from well-off investors, investment banks, 

and any other financial institutions. 

However, it does not always take a monetary form; it can also be provided in the form 

of technical or managerial expertise. Venture capital is typically allocated to small companies 

with exceptional growth potential, or to companies that have grown quickly and appear 

poised to continue to expand. Venture capital funds manage pooled investments in high-
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growth opportunities in startups and other early-stage firms and are typically only open to 

accredited investors. 

One important difference between venture capital and other private equity deals, 

however, is that venture capital tends to focus on emerging companies seeking substantial 

funds for the first time, while private equity tends to fund larger, more established 

companies that are seeking an equity infusion or a chance for company founders to transfer 

some of their ownership stakes. 

Venture capital is a subset of private equity (PE). While the roots of PE can be traced 

back to the 19th century, venture capital only developed as an industry after the Second 

World War. 

Harvard Business School professor Georges Doriot is generally considered the "Father 

of Venture Capital." He started the American Research and Development Corporation (ARD) 

in 1946 and raised a $3.5 million fund to invest in companies that commercialized 

technologies developed during WWII. ARDC's first investment was in a company that had 

ambitions to use x-ray technology for cancer treatment. The $200,000 that Doriot invested 

turned into $1.8 million when the company went public in 1955. [3] 
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Business expertise. Aside from the financial backing obtaining venture capital 

financing can a start-
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death" is the different goals of investors and businessmen (developers), the former strive for 

quick profit, and the latter are focused on obtaining scientific results. 

For small businesses, or for up-and-coming businesses in emerging industries, venture 

capital is generally provided by high net worth individuals (HNWIs)—also often known as 

“angel investors"—and venture capital firms. The National Venture Capital Association 

(NVCA) is an organization composed of hundreds of venture capital firms that offer to fund 

innovative enterprises. 

Common occurrence among angel investors is co-investing, in which one angel 

investor funds a venture alongside a trusted friend or associate, often another angel investor. 

While both provide money to startup companies, venture capitalists are typically 

professional investors who invest in a broad portfolio of new companies and provide hands-

on guidance and leverage their professional networks to help the new firm. Angel investors, 

on the other hand, tend to be wealthy individuals who like to invest in new companies 

more as a hobby or side-project and may not provide the same expert guidance. Angel 

investors also tend to invest first and are later followed by VCs. 

Due to the industry's proximity to Silicon Valley, the overwhelming majority of deals 

financed by venture capitalists are in the technology industry—the internet, healthcare, 

computer hardware and services, and mobile and telecommunications. But other industries 

have also benefited from VC funding. 

Venture capital is also no longer the preserve of elite firms. Institutional investors and 

established companies have also entered the fray. For example, tech behemoths Google and 
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                            Modern theories of leadership and types of leaders 
 
 Ketevan Kiguradze   



based on the works of (Bass, B. M., & Riggio, R. E. ., 2006)  (Burton Nanus, Warren G. Bennis, 2006) made 

important contributions to the development of the theory. According to (Bass, B. M., & Riggio, R. E. ., 2006), the 

popularity of transformational theory is likely due to its emphasis on intrinsic motivation and follower 

development. According to this theory, people at the level of change and uncertainty need inspiration and faith 



According to House's charismatic leadership theory, its face-to-face outcome is the follower's trust in the leader's 

ideology. Recognition of the leader without any doubts or questions. 

 

Authentic leadership is one of the newest areas in leadership research. The theory focuses on how "real" and how 

authentic leadership is. There are several definitions of authentic leadership that explain it from different 

perspectives, they are: intrapersonal - processes taking place inside the leader's personality, self-knowledge, self-

regulation, and self-evaluation; Developing - leadership behavior that is formed from the positive psychological 

characteristics and high quality of the leader. This is what is formed in people throughout life. Interpersonal - is 

built on relationships and involves achieving interactions between leaders and followers. It is a two-way process, 

as leaders influence followers and vice versa. 

 

Today, one of the most recognized approaches in the field of leadership research is (House). The theory of 

conformity of means and ends. The essence of this theory lies in what the leader does to motivate subordinates 

to achieve the group and organization's goal. 1. Effective leaders clearly define the goals that subordinates are 

trying to achieve by working; 2. They reward subordinates according to the work done and the goal achieved and 

3. They make clear the path that leads to the work goal. According to this theory, the steps a leader should take 

to motivate subordinates depend on both the subordinates and the type of work performed. In the theory of 

compatibility of the goal and the means, four behaviors of the leader are distinguished: 1. directive behavior; 2. 

Supportive behaviors; 3. complicity behavior; 4. Achievement-oriented behavior. Therefore, leaders must decide 

for themselves which behavior to use during the task to be performed by the subordinate in order to motivate 

them to perform the task. 

 

Leadership concepts address the factors that leaders consider when applying leadership styles and overseeing an 

individual team. These principles focus on the ideas and perceptions about the qualities that leaders should have 

and how they should perform in the role of leader. In addition, leadership concepts help professionals understand 

what kind of skills and character traits they need to develop to advance in leadership roles. 

The concepts of leadership differ from leadership theories in several ways. For example, 



According to the studies by  (Kirkpatrick, S.A. and Locke, E.A, 1991)have identified six traits that distinguish 

leaders from others. These are: Attitude, motivation, honesty, self-confidence, cognitive abilities and 

knowledge of the case. They think people with similar traits can be born or acquired over a lifetime They are. 

These 6 traits are exactly the traits that leaders need. These qualities of a leader distinguish people from each 

other and therefore, these differences are an important part of the leadership process.  Also, empirical research 

(Peter G Northouse, 2010) conducted in the 1990



diversity. Brave - have the patience to achieve the goal, despite seemingly insurmountable obstacles. Exercise 

self-confidence in times of stress. Direct - Use common sense to make the right decisions at the right time. 

Imaginative - Make timely and appropriate changes in your thinking, plans and methods. Show creativity by 

thinking of new and better goals, ideas and problems. (John Whitehead, 2016) 

 

Leadership theories study the qualities of effective leaders, including the qualities of effective and influential 

leaders, patterns of behavior, and actions. Leadership theories focus on explaining what makes good leaders by 

focusing on different behaviors and qualities that professionals can develop to become good leaders. While the 

concepts of leadership are qualities in themselves, leadership theories are the study and explanation of these 



 



How to Compute the Gradient 
of  the Analytically Unknown 
Value Function

Malkhaz Shashiashvili



Section 1. The Basic Idea of the Research Project

It is well known that vast majority of the real-world optimization problems cannot be solved 

analytically in closed form since they are highly nonlinear by their intrinsic nature.

Denote 𝑉



Our basic observation: The Value function 𝑉 𝑥 of the optimization problem is often convex (or semi 

convex) in multidimensional argument 𝑥 (for example, in engineering thermodynamics it is 



Our basic idea



Section 2. Convex Envelope Animations











Section 3. The 𝑳𝟐-Approximation of the Gradient of the Semiconvex Function 

through the Convex Envelope

Let 𝑢: 𝐷 → 𝑅





Taking successively 𝑢 = 0 and 𝑣 = 0 in (3.3) we get

ቊ
𝑐𝑜𝑛𝑣 𝑣 𝐿∞ 𝐷 ≤ 𝑣 𝐿∞ 𝐷 ,

𝑐𝑜𝑛𝑣 𝑢 𝐿∞ 𝐷 ≤ 𝑢 𝐿∞ 𝐷 .
(3.4)

Proposition 3.2. On the space 𝐶 𝐷 ∩ 𝐿∞ 𝐷 the mapping 𝑢 → 𝑐𝑜𝑛𝑣 𝑢 possesses the following

important property

න

𝐷

𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑢 − 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑣 2 ∙
𝑑𝜕𝐷

2

𝑛
𝑑𝑥 ≤ 5𝑚𝑒𝑎𝑠 𝐷 ∙ 𝑢 − 𝑣 𝐿∞ 𝐷 𝑢 𝐿∞ 𝐷 + 𝑣 𝐿∞ 𝐷 . 3.5

Proof. We have from the bound (3.4) that the convex functions 𝑐𝑜𝑛𝑣

𝜕𝐷



Consider now the bounded viscosity solution 𝑢 of the equation (3.1) which is assumed to be 

semiconvex with semiconvexity constant 𝑐 ≥ 0 and its uniform continuous numerical approximation 

𝑢𝛿, i.e.

𝑢𝛿 − 𝑢 𝐿∞ 𝐷 𝛿⟶0
0. 3.7

Further consider the bounded continuous functions

𝑢 + 𝑐 ∙ 𝑣0 and 𝑢𝛿 + 𝑐 ∙ 𝑣0 (3.8)

and their convex envelopes

conv 𝑢 + 𝑐 ∙ 𝑣0 and 𝑐𝑜𝑛𝑣 𝑢𝛿 + 𝑐 ∙ 𝑣0 , (3.9)

where

𝑣0 𝑥 =
1

2
∙ 𝑥 2.

The next proposition is the main result of Section 3.
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Section 4. Computation of the Gradient of the Solution of Monge-Ampere 

Partial Differential Equation in a Planar Domain

We discuss next the Monge-Ampere equation. The Monge-Ampere equation is a fully nonlinear elliptic 

PDE. Applications of the Monge-Ampere equation appear in the classical problem of prescribed 

Gauss curvature and in the problem of optimal mass transportation (with quadratic cost).

We shall present a simple (nine point stencil) finite difference method which performs well for smooth 

as well as for singular solutions. The Monge-Ampere PDE in a planar domain 𝐷 ⊂ 𝑅2 is the following

𝑑𝑒𝑡 𝐻𝑒𝑠𝑠𝑖𝑎𝑛 𝑈 𝑥 = 𝑓 𝑥 , 𝑓 𝑥 ≥ 0,

or equivalently

𝜕2𝑢

𝜕𝑥2 ∙
𝜕2𝑢

𝜕𝑦2 −
𝜕2𝑢

𝜕𝑥𝜕𝑦

2

= 𝑓 with Dirichlet boundary conditions 𝑢 = 𝑔 on 𝜕𝐷 (4.1)

and the additional convexity constraint

𝑢 𝑥, 𝑦 is convex in 𝐷, (4.2)

which is required for the equation to be elliptic. Without the convexity constraint this equation does 

not have a unique solution. For example, taking the boundary function 𝑔 =





Now solving for 𝑢𝑖𝑗 and selecting the smaller one (in order to select the locally convex solution), we 

obtain

𝑢𝑖𝑗 =
1

2
𝑎1 + 𝑎2 −

1

2
𝑎1 − 𝑎2

2 +
1

4
𝑎3 − 𝑎4

2 + ℎ4𝑓𝑖𝑗 . 4.7

We can now use Gauss-Seidel iteration to find the fixed point of (4.7).

The Dirichlet boundary conditions are enforced at boundary grid points. The convexity constraint 

(4.2) is not enforced (beyond the selection of the positive root in (4.7).

Next we consider two exact solutions for the Monge-Ampere PDE (4.1), (4.2) on the square

0,1 × 0,1 .



Example 4.1.

൞
𝑢



Figure 1



Figure 2

The Monge-Ampere equations (the Examples 4.1 and 4.2) are considered on the square 0,1 × 0,1 .



In the tables below for the different grid points we compute the number of iterations, the 

computation times, the errors of approximation of the exact solution and of the exact gradient.

Computation times and errors for the exact solution and its gradient for the Example 4.1 on an 𝑁 × 𝑁

grid:

#
Number 

of iterations

Computation 

times

Uniform error 

for the exact solution

Uniform error 

for the exact 

gradient

𝑳𝟐-error 

for the exact 

gradient

21 1362 1 sec. 1.5 × 10−4
0.1255 0.011

61 10840 10 sec. 1.8 × 10−5
0.0441 0.0038

101 28764 60 sec. 6.7 × 10−6
0.0267 0.0023

141 54802 300 sec. 3.4 × 10−6
0.0192 0.0016





We give the surface plots (for Examples 4.1 and 4.2) of the following functions:

a) the exact solution,

b) finite difference numerical approximation,

c) the convex envelope of the numerical approximation,

d) partial derivative w.r. to 𝑥 of the exact solution,

e) partial derivative w.r. to 𝑦 of the exact solution,

f) partial derivative w.r. to 𝑥 of the convex envelope,

g) Partial derivative w.r. to 𝑦 of the convex envelope.



Section 5. Pricing and Hedging of American Options written on Multiple Assets

In this section we study the multidimensional parabolic obstacle problem and its relation to the 

pricing and hedging of American options written on multiple assets. We shall consider the so called 

strong solutions of parabolic obstacle problem that have been studied, for example, in Friedman 

[3, Chapter 1].  Strong solutions have second order Sobolev (weak) derivatives so that the Partial 

Differential Equation (PDE) can be written pointwisely a.e., strong solutions should be preferable in 

financial applications because of their better regularity properties.

The above obstacle problem appears naturally in the valuation of American type Claims in 

financial market. The obstacle is the so called payoff function and the solution of the obstacle 

problem is the value function of the American option written on multiple assets. A good 

background study is given in the paper by Broadie and Detemple [1]. 

The semiconvexity is a natural property of a large class of value functions of the optimization 

problems (see, for instance, Cannarsa and 



American option can be exercised by its holder (as an opposite to European option) at any time up 

to and including expiry. This makes their pricing mathematically challenging and few closed form 

solutions have been found. American options are important because they are very widely traded.  

At least as important as the pricing of American options are the hedging issues that are crucial for 

the writer of the option. 

In this section we study the parabolic obstacle problem in the strong sense. More precisely, we     

seek a solution 𝑢 𝑥, 𝑡 , which belongs to the parabolic Sobolev space (see, for example, Krylov [6, 

Chapter 2]) and satisfies a system of inequalities

ቊ
𝐿𝑢 𝑥, 𝑡 ≤ 0, 𝑢 𝑥, 𝑡 ≥ 𝑔 𝑥 ,

𝐿𝑢 𝑥, 𝑡 ∙ 𝑢 𝑥, 𝑡 − 𝑔 𝑥 = 0
(5.1)

𝑑𝑥 × 𝑑𝑡 with terminal condition

𝑢 𝑥, 𝑇 = 𝑔 𝑥



when the obstacle 𝑔 𝑥 is non-smooth there are not many known techniques to be used in the study 

of the obstacle problem. Our objective is to develop some new results for the nonsmooth case, with 

focus on applications to American type options written on multiple assets, which is an active 

research area at present in mathematical finance.

We will consider the pricing and hedging of multidimensional American options in a financial market 

driven by a general multidimensional Ito diffusion. The American option is a financial contract, 

assuming a time horizon of 𝑇 > 0 and a market consisting of 𝑛 assets 𝑆 𝑡 = 𝑆1 𝑡 , … , 𝑆𝑛 𝑡 giving a 

payoff at time 𝑡 equal to Ψ 𝑆1 𝑡 , … , 𝑆𝑛 𝑡



We assume that there exists a risk-neutral martingale measure 𝑄, such that with respect to 𝑄 the 

logarithms of the prices 𝑋 𝑡 = ln 𝑆1 𝑡 , … , ln 𝑆𝑛



We will assume that the operator 𝐿𝑢 is uniformly parabolic in the sense that there exists 𝜆 > 0 such that

෍

𝑖,𝑗=1

𝑛

𝑎𝑖𝑗 𝑥, 𝑡 ∙ 𝜉𝑖 ∙ 𝜉𝑗 ≥ 𝜆 ∙ 𝜉 2, whenever 𝑥, 𝑡 ∈ 𝑅𝑛 ×

�Ð

wh࠷v�

∈

ሀ

𝑛

∈

∈

𝑥
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The convexity (semiconvexity) of the value function 𝑉 𝑥, 𝑡 of the American option for arbitrary fixed 

time instant 𝑡 is the crucial point for our new device of the construction of the nearly optimal discrete 

time delta hedging strategies for American options written on multiple assets. 

Indeed recently in the paper by Shashiashvili

45



But the perfect hedging in continuous time requires the continuous rebalancing of the writer’s 

portfolio in the underlying assets and the money market account, which is impossible in practice. In 

reality, the writer trades only at some discrete instants of time at which he rebalances his portfolio. 

Moreover, the delta-hedging requires the knowledge of the gradient 𝑔𝑟𝑎𝑑 𝑉 𝑥, 𝑡 of the value 

function 𝑉 𝑥, 𝑡 , but the explicit form neither of the value function, nor of its partial derivatives is 

known even in the simplest Black-Sholes model for American put option with finite horizon 𝑇 > 0.

Several approximation methods were devised in order to compute the value function of the 

American option. In particular, finite difference methods were developed in Wilmott, Dewynne, 

and Howison [10], and Jaillet, Lamberton, and Lapeyre [4]. We assume here that we have already 

been given some continuous in the argument 𝑥 uniform approximation 

46



Our hedging method consists in the following:  for each function 𝑉ℎ 𝑥, 𝑡𝑘 , 𝑘 = 1,2, … , 𝑁, consider first its  

convex envelope 𝑐𝑜𝑛𝑣 𝑉ℎ 𝑥, 𝑡𝑘 , 𝑘 = 1,2, … , 𝑁, which is the maximal convex function dominated by the 

given function 𝑉ℎ 𝑥, 𝑡𝑘 and then its gradient 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑉ℎ 𝑥, 𝑡𝑘 , 𝑘 = 1,2, … , 𝑁. Now the discrete time 

hedge 𝐷𝛿,ℎ 𝑡 , 0 ≤ 𝑡 ≤ 𝑇 can be defined in the following manner

𝐷𝛿,ℎ 𝑡 = 𝑔𝑟𝑎𝑑 𝑐𝑜𝑛𝑣 𝑉ℎ S 𝑡𝑘 , 𝑡𝑘 if 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, 𝑘 = 1, … , 𝑁 − 1 . (�á
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Let 𝑈 𝑥 and 𝑉 𝑥 be two semiconvex functions in 𝑅𝑛 with the semiconvexity constants 𝑐𝑈 and 𝑐𝑉, 

respectively (see Cannarsa and Sinestrari [2, Chapter 1, Definition 1.1.1]) and 𝐻 𝑥 be a nonnegative 
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The Adomian series representation of some
quadratic BSDEs

R. Tevzadze

Abstract. The representation of the solution of some Backward
Stochastic Di�erential Equation as an in�nite series is obtained. Some
exactly solvable examples are considered.

2020 Mathematics Subject Classi�cation. 90A09, 60H30, 90C39

Keywords: Stochastic exponential, martingale, Adomian series, Brownian
Motion.

1 Introduction

In a number of papers[1,2] Adomian develops a numerical technique using
special kinds of polynomials for solving non-linear functional equations. How-
ever, Adomian and his collaborators did not develop widely the problem of
convergence.

In this article we will study by Adomian technique some kind of quadratic
backward martingale equation and prove the convergence of the series. For
example we tackle an equation of the form

ET (m)EαT (m?) = c expf�g (1)

w.r.t. stochastic integrals m =
∫
fsdWs; m

? =
∫
gsdW

?
s and real number c,

where (W;W?) is 2-dimension Brownian Motion and � is a random variable.

1
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Equations of such type are arising in mathematical �nance and they are
used to characterize optimal martingale measures (see, Biaginiat at al (2000),
Mania and Tevzadze (2000), (2003),(2006)). Note that equation (1) can be
applied also to the �nancial market models with in�nitely many assets (see
M. De Donno at al (2003)). In Biagini at al (2000) an exponential equation
of the form

ET (m)

ET (m?)
= ce

∫ T
0 λ2sds

was considered (which corresponds to the case � = �1 ).
Our goal is to show the solvability of the equation (1) using the Ado-

mian method proving the convergence of series. On the one hand, a sim-
pler proof of solvability is obtained. On the other hand, it allows to obtain
the approximation of the solution. It is possible to �nd a solution in the
form of series, if we de�ne a sequence of martingales w.r.t. the measure
ET (
∑n

i mi+
∑n

i m
?
i )�P from equations c0ET (m0n+1 +m0?n+1) = E2

T (m0?n ), where
m0n+1 =
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where � is a given FT -measurable random variable and � is a given real
number. A solution of equation (2) is a triple (c;m;m?), where c is strictly
positive constant, m 2 M and m? 2 M?. Here E(X) is the Doleans-Dade
exponential of X.

It is evident that if � = 1 then equation (2) admits an "explicit" solution.
E.g., if � = 1 and � is bounded, then using the unique decomposition of the
martingale E(expf�g=Ft)

E(expf�g=Ft) = E expf�g+mt(�) +m?t (�); m(�) 2M; m?(�) 2M?;
(3)

it is easy to verify that the triple c = 1
E expfηg ,

mt =

∫ t

0

1

E(expf�g=Fs)
dms(�); m?t =

∫ t

0

1

E(expf�g=Fs)
dm?s (�)

satis�es equation (2).
Our aim is to prove the existence of a unique solution of equation (2) for

arbitrary � 6= 0 and � of a general structure, assuming that it satis�es the
following boundedness condition:

B) � is an FT -measurable random variable of the form

� = �� + 
AT ; (4)

where �� 2 L1, 
 is a constant and A = (At; t 2 [0; T ]) is a continuous
F -adapted process of �nite variation such that

E(varT (A)� varτ (A)=Fτ ) � C

for all stopping times � for a constant C > 0.
One can show that equation (2) is equivalent to the following semimartin-

gale backward equation with the square generator

Yt = Y0 �



2
At � hLit �

1

�
hL?it + Lt + L?t ; YT =

1

2
��: (5)

We use also the equivalent equation of the form

LT + L?T = c+ hLiT +
1

�
hL?iT +




2
AT :

w.r.t. (c; L; L?).

3
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We use notations jM j
BMO

= inffC : E
1
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In particular, if jAjω <1 then the martingale E(AT jFt) belongs to the BMO
space and

jE(AT jF.)jBMO
� jAjω:

Proof. By the Ito formula

Y 2
t = 2

∫ t

0

Ysdms + 2

∫ t

0

YsdAs + hmit:
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Assume that inequality (8) is valid for any k � n and let us show that

jL(n+1) + L?(n+1)j
BMO
� an+1(1 + j�j)n+1jL(0) + L?(0)jn+2

BMO
: (9)

Applying Lemma 1 for Y
(n+1)
t and the Kunita-Watanabe inequality we have

jL(n+1) + L?(n+1)j
BMO
�

� ess sup
τ

n∑
k=0

E(varTτ (
n∑
k

hL(k); L(n�k)i+ �hL?(k); L?(n�k)i)jFτ )

�
n∑
k=0

ess sup
τ

E
1
2 (varTτ hL(k)ijFτ )E

1
2 (varTτ hL?(n�k)ijFτ )

+j�j
n∑
k=0

ess sup
τ

E
1
2 (varTτ hL?(k)ijFτ )E

1
2 (varTτ hL?(n�k)ijFτ )

�
n∑
k

jL(k)j
BMO
jL(n�k)j

BMO
+ j�jjL?(k)j

BMO
jL?(n�k)j

BMO

� (1 + j�j)
n∑
k=0

jL(k) + L?(k)j
BMO
jL(n�k) + L?(n�k)j

BMO
: (10)

Therefore, from (10), using inequalities (8) for any k � n, we obtain

jL(n+1) + L?(n+1)j
BMO
�

� (1+j�j)
n∑
k=0

ak(1+j�j)kjL(0)+L?(0)jk+1
BMO

an�k(1+j�j)n�kjjL(n�k)+L?(n�k)jn�k+1
BMO

� (1 + j�j)n+1jL(0) + L?(0)jn+2
BMO

n∑
k=0

akan�k =

= an+1(1 + j�j)n+1jL(0) + L?(0)jn+2
BMO

and the validity of inequality (8) follows by induction.

Theorem 1. The series
∑

n�0(L(n) +L?(n)) is convergent in BMO-space,
if 
 and j��j1 are small enough and the sum of series is a solution of the
equation (5).

6
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Proof. Without loss of generality assume that
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We have

L
(0)
T + L

(0)?
T = c0 +

∫ T

0

(T � s)WsdWs +

∫ T

0

(T � s)W?
s dW

?
s ;

L
n+1)
T + L

(n+1)?
T = cn +

n∑
k=0

hL(k)
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Introducing �(s) =
∑1

n=0 �ns
2n+1; �(s) =

∑1
n=0 �ns

2n+1 one obtains

�0(s) = �0 +
1∑
n=0

(2n+ 3)�n+1s
2n+2

= 1 + 2
1∑
n=0

n∑
k=0

(�k�n�k)s
2n+2 = 1 + 2a2(s);

�0(s) = �0 +
1∑
n=0

(2n+ 3)�n+1s
2n+2

= 1� 2
1∑
n=0

n∑
k=0

�k�n�ks
2n+2 = 1� 2�2(s):

I.e.

�0(s) = 1 + 2a2(s); �(0) = 0; (11)

�0(s) = 1� 2�2(s); �(0) = 0:

Thus

�(s) =
1p
2

tan(
p

2s); �(s) = � 1p
2

tanh(
p

2s):

If T < π
2
p

p2;; �
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We have

L
(0)
T = EL

(0)
T +

∫ T

0

(T � s)W?
s dWs; L

(0),?
T = EL

(0),?
T +

∫ T

0

(T � s)WsdW
?
s ;

L
(n+1)
T +
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Using representation of integrands by stochastic derivatives we get

(T � t)2n+3(�n+1Wt + �n+1W
?
t )

= E[Dt(
n∑
k=0

hL(k); L(n�k)iT �
n∑
k=0

hL(k)?; L(n�k)?iT )jFt]

= 2
n∑
k=0

[(�k�n�k � �k�n�k)Wt + (�k�n�k + �k�n�k)W
?
t ]

∫ T

t

(T � s)2n+2ds

=
2(T � t)2n+3

2n+ 3

n∑
k=0

[(�k�n�k � �k�n�k)Wt + (�k�n�k + �k�n�k)W
?
t ];

(T � t)2n+3(�n+1Wt � �n+1W
?
t )

= E[D?t (
n∑
k=0

hL(k); L(n�k)iT �
n∑
k=0

hL(k)?; L(n�k)?iT )jFt]

= 2
n∑
k=0

[�(�k�n�k � �k�n�k)W?
t + (�k�n�k + �k�n�k)Wt]

∫ T

t

(T � s)2n+2ds

=
2(T � t)2n+3

2n+ 3

n∑
k=0

[�(�k�n�k � �k�n�k)W?
t + (�k�n�k + �k�n�k)Wt]:

Equalising coe�cients at W;W? we obtain the desired formula. One can
be checked that limn!1

n
√
janj = 0; limn!1

n
√
jbnj = 0: Introducing �(s) =∑1

n=0 �ns
2n+1; �(s) =

∑1
n=0 �ns

2n+1 one obtains

Lt = L0 +

∫ t

0

(�(T � s)Ws + �(T � s)W?
s )dWs;

L?t = L?0 +

∫ t

0

(�(T � s)Ws � �(T � s)W?
s )dW?

s :

On the other hand we can derive ODE for the pair (�; �)

�0(s) = 2�2(s)� 2�2(s); �(0) = 0; (12)

�0(s) = 1 + 4�(s)�(s); �(0) = 0:

11
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Indeed

�0(s) = �0 +
1∑
n=0

(2n+ 3)�n+1s
2n+2

= 2
1∑
n=0

n∑
k=0

(�k�n�k � �k�n�k)s2n+2
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Proposition 3.

Ee
∫ T
0 W 2

t dt =


1p

cos(
p

2T )
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If T > π
2
p

2
then Ee

∫ T
0 W 2

t dt > Ee
∫ �

2
√
2

0 W 2
t dt =1:

Lemma 3. Let (an)n�0 be a solution of the system

a0 = 1; an+1 =
n∑
k=0

akan�k: (13)

Then an = 1
4n+2

(
2n+2
n+1

)
.

Proof. For the series u(�) =
∑1

n=0 an�
n from (13) we get equation u(�) =

1 + �u2(�), with the roots u(�) = 1
2λ

(1 �
p

1� 4�). The equality u(�) =
1

2λ
(1 +

p
1� 4�) is impossible, since decomposition of the right hand side is

starting from the term 1
λ
. Therefore, equality an = 1

4n+2

(
2n+2
n+1

)
follows from

the Taylor expansion of 1�
p

1� 4�, since

u(�) =
1

2�
(1�

p
1� 4�)

= �1

2

∑
n�1

1
2
(1

2
� 1) � � � (1

2
� n+ 1)

n!
(�4)n�n�1

=
1

2

∑
n�1

(2� 1) � � � (2n� 2� 1)

2nn!
4n�n�1

=
1

2

∑
n�1

(2n� 3)!!

n!
2n�n�1 =

1

2

∑
n�1

1

2n� 1

(
2n

n

)
�n�1:

Lemma 4. There exist sequences (mi; i � 1) 2 M; (m?i ; i � 1) 2 M?;

such that eη = c1
ET (m1)

ET (m⊥
1 )
E2
T (m?1 ) and

eη = cn
ET (
∑n

i mi)

ET (
∑n

i m
?
i )
E2
T (m

′?
n ); n � 2; (14)

where m
′?
n = m?n � hm?n ;

∑n�1
i m?i i.

Proof. The theorem will be proved by induction. Assume (14) is valid
for n. There exist such martingales mn+1;m

?
n+1 that c0ET (m0n+1 + m0?n+1) =

E2
T (m

′?
n ) and

m0n+1 = mn+1 � hmn+1;

n∑
i

;mii; m0?n+1 = m?n+1 � hm?n+1;

n∑
i

m?i i

14

63



are martingales w.r.t. E(
∑n

i mi +m?i ) � P: Thus

eη = cnc
0 ET (

∑n
i mi)

ET (
∑n

i m
?
i )
E(mn+1 � hmn+1;

n∑
i

mii+m?n+1 � hm?n+1;

n∑
i

m?i i)

= cn+1
ET (
∑n

i mi)ET (mn+1 � hmn+1;
∑n

i mii)
ET (
∑n

i m
?
i )ET (m?n+1 � hm?n+1;

∑n
i m

?
i i)
E2
T (m?n+1 � hm?n+1;

n∑
i

m?i i)

= cn+1
ET (
∑n+1

i mi)

ET (
∑n+1

i m?i )
E2
T (m

′?
n+1):

Remark. If we will prove the convergence of series
∑

imi;
∑

im
?
i , then

m?n ! 0;m
′?
n ! 0; E(m

′?
n )! 1 and eη = c

ET (
∑∞
i mi)

ET (
∑∞
i m⊥

i )
.
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Number of Unordered Samples of Integers
With a Given Sum

Tsotne Kutalia
Cybernetics Institute of Georgian Technical University.

Abstract
There is an analytic formula counting the number of ordered
samples of N non-negative integers making up a given sum.
In this paper we study the number of unordered samples
of N non-negative integers with a given sum. We produce
a closed form solution for N = 3 non-negative integers.

Keywords: Combinatorics, Number Theory, Graph Theory 一
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N = 3 n � N

f3(n) = I{{n}3=0}

[
(n + 3)(n + 6)

18
+ I{{n}2=0}

n2

36
+ I{{n}2 6=0}

(n � 3)(n + 3)

36

]
+

I{{n}3=1}

[
(n + 2)(n + 5)

18
+ I{{n}2=0}

(n + 2)2

36
+ I{{n}2 6=0}

(n � 1)(n + 5)

36

]
+

I{{n}3=2}

[
(n + 1)(n + 4)

18
+ I{{n}2=0)}

(n + 4)2

36
+ I{{n}2 6=0}

(n + 1)(n + 7)

36

]

f3(n) =
(n + 3 � fng3)(n + 6 � fng3)

18
+

(n + 2(fng3)2) � (3fng3)2

36

fngk n
k

2 Graphical Representation of Partitions, N=3
fN (n)

N [a1; :::; aN ] a1 + ::: + aN = n:
f0(n) = 1 n f1(n) = 1 n

n; f2(n) = n+2
2 n

f2(n) =
n+1
2 f2(n)

f2(n) = I{n mod 2=0}
n + 2

2
+ I{n mod 2=1}

n + 1

2

N = 3 N
n = 3

jj 1 + 1 + 1; j 1 j +1 + 1; 1 j +1 j +1

a1 = 0; a2 = 0; a3 = 3:
a1 = 0; a2 = 1; a3 = 2

a1 = 1; a2 = 1; a3 = 1
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Fig. 2 f3(4) = 4

Fig. 3 f3(15) = 27 Fig. 4 f3(16) = 30 Fig. 5 f3(17) = 33

Fig. 6 f3(18) = 37 Fig. 7 f3(19) = 40 Fig. 8 f3(20) = 44

N = 3 n = 15; n = 16; n = 17; n = 18; n =
19; n = 20

n = 15; n = 16 n = 17 n = 18; n =
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19; n = 20

n mod 3 = 0 : n = 15

(11; 6) x y

(x0; y0) x0 x
y0 y y0

y0 = 1 +
n

3

n mod 3 = 1 n = 16

(11; 5)
(10; 3) (9; 1)
(x0; y0 � 1) (x0 � 1; y0 � 3) y
y = 1 y0

y0 = 1 +
n � 1

3

n mod 3 = 2 n = 17

(12; 6) (11; 4) (10; 2)
(x0 + 1; y0) (x0; y0 � 2) y

y0

y0 = 1 +
n � 2

3

n = 18
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Fig. 9 f3(15) = 27 Fig. 10 f3(16) = 30 Fig. 11 f3(17) = 33

Fig. 12 f3(18) = 37 Fig. 13 f3(19) = 40 Fig. 14 f3(20) = 44

n

Sn =
n

2
(a1 + an)

a1 an

1 + 2 + ::: + (1 + n
3 )

(n+3)(n+6)
18

n

1 + 3 + 5 + ::: + (n3 � 1) n2

36
n

2+ 4+ 6+ :::+ (n3 � 1) (n−3)(n+3)
36

3
n n mod 3 = 0

I{{n}3=0}

[
(n + 3)(n + 6)

18
+ I{{n}2=0}

n2

36
+ I{{n}2 6=0}

(n � 3)(n + 3)

36

]
:

1+2+ :::+(1+ n−1
3 ) (n+2)(n+5)

18
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:::+ n−1
3

(n−1)(n+5)
18 n � 1

1 + 3 + 5 + ::: + n−1
3

(n+2)2

36
3 n

n mod 3 = 1

I{{n}3=1}

[
(n + 2)(n + 5)

18
+ I{{n}2=0}

(n + 2)2

36
+ I{{n}2 6=0}

(n � 1)(n + 5)

36

]
:

1+ 2+ 3+ :::+ (1+ n−3
3 ) (n+1)(n+4)

38
n �2

n � 2 2+4+ :::+ n−1
3

(n+4)2

36 n � 2 1+ 3+ :::+ (1+ n−3
3 ) (n+1)(n+7)

36
3

n n mod 3 = 2

I{{n}3=2}

[
(n + 1)(n + 4)

18
+ I{{n}2=0}

(n + 4)2

36
+ I{{n}2 6=0}

(n + 1)(n + 7)

36

]
f3(n)

f3(n) = I{{n}3=0}

[
(n + 3)(n + 6)

18
+ I{{n}2=0}

n2

36
+ I{{n}2 6=0}

(n � 3)(n + 3)

36

]
+

I{{n}3=1}

[
(n + 2)(n + 5)

18
+ I{{n}2=0}

(n + 2)2

36
+ I{{n}2 6=0}

(n � 1)(n + 5)

36

]
+

I{{n}3=2}

[
(n + 1)(n + 4)

18
+ I{{n}2=0)}

(n + 4)2

36
+ I{{n}2 6=0}

(n + 1)(n + 7)

36

]

f3(n) =
(n + 3 � fng3)(n + 6 � fng3)

18
+

(n + 2(fng3)2) � (3fng3)2

36

n � 3
n � 3 n + 3

n+3 n
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I{{n+3}3=0}(1 + 2 + 3 + ::: + (1 +
n + 3

3
)+

I{{n+3}2=0}(1 + 3 + 5 + ::: + (
n + 3

3
� 1))+

I{{n+3}2 6=0}(2 + 4 + 6 + ::: + (
n + 3

3
� 1))):
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3 General Recursive Formula for Arbitrary N
and n >= N

N
N = 4

f4(n) = I{{n}4=0}

n
4 +1∑
k=1

f4
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N

fN (n) = I{{n}N=0}

n
N +1∑
k=1

fNk−N (N � 1) + I{{n}N=1}

n−1
N +1∑
k=1

fNk−N+1(N � 1) + :::+

I{{n}N=N−1}

n−N+1
N +1∑
k=1

fNk−1(N � 1) =

N−1∑
j=1

I{{n}N=j}

n−j
N +1∑
k=1

fNk−N+j(N � 1)

References

Appendix A Scatter Configurations for N = 3
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Fig. A1 f3(3) = 3 Fig. A2 f3(4) = 4 Fig. A3 f3(5) = 5

Fig. A4 f3(6) = 7 Fig. A5 f3(7) = 8 Fig. A6 f3(8) = 10

Fig. A7 f3(9) = 12 Fig. A8 f3(10) = 14 Fig. A9 f3(11) = 16

Fig. A10 f3(12) = 19 Fig. A11 f3(13) = 21 Fig. A12 f3(14) = 24

Fig. A13 f3(15) = 27 Fig. A14 f3(16) = 30 Fig. A15 f3(17) = 33

Fig. A16 f3(18) = 37 Fig. A17 f3(19) = 40 Fig. A18 f3(20) = 44

Fig. A19 f3(20) = 44
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Construction of identifying and real
M -estimators in general statistical model with

filtration

T. Toronjadze1,2
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0160, Tbilisi, Georgia;
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Abstract
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Theorem 1. Let the following conditions hold:

a) for each � ∈ �, lim
n→∞

cn(�) = 0;

b) for each n ≥ 1, the mapping �  Ln(�) is continuously differentiable
in � Qn

θ -a.s., ( _Ln(�) := ∂
∂θ

Ln(�));

c) for each � ∈ �, there exists a function �Q(�; y), �; y ∈ �, such that

Qn
θ - lim

n→∞
c2
n(�)Ln(y) = �Q(�; y) (4)

and the equation
�Q(�; y) = 0

with respect to the variable y has the unique solution �∗ = bQ(�);

d) Qn
θ - lim

n→∞
c2
n(�) _Ln(�∗) = −
Q(�), where 
Q(�) is a positive number for

each � ∈ �;

e) lim
r→0

lim sup
n→∞

Qn
θ{sup{y:|y−θ∗|≤∈n(�)
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(ii) c−1
n (�)(Tn − �∗) =

c−1
n (�)Ln(�∗)


Q(�)
+ Rn(�); Rn(�)

Qn
θ−→ 0.

Proof. 1. By the Taylor formula we have

Ln(y) = Ln(�∗) + _Ln(�∗)(y − �∗) + [ _Ln(��) − _Ln(�∗)](y − �∗);

where �� = �∗ + �(�∗)(y − �∗), �(�∗) ∈ [0; 1] and the point �� is chosen so that
�� ∈ Fn (� ∈ F means that r.v. � is F -measurable).

From this we get

c2
n(�)Ln(y) = c2

n(�)Ln(�∗) − 
Q(�)(y − �∗) + "n(��; �∗)(y − �∗); (5)

where "n(y; �∗) ∈ Fn,

"n(y; �∗) = c2
n(�)[ _Ln(y) − _Ln(�∗)] + [c2

n(�) _Ln(�∗) + 
Q(�)]; y ∈ �:

Evidently, conditions d) and e) ensure that

lim
r→0

lim sup
n→∞

Qn
θ

{
sup→∞

Qn
θθ

⇁ 
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Obviously, 
θ(n; r) ∈ Fn. Hence, if ! ∈ 
θ(r; n), then from equality (7)
we get Ln(�∗ + u)u < 0 for |u| = r.

Since the mapping u  Ln(�∗ + u) is continuous with respect to u, the
equation Ln(�∗ + u) = 0 for |u| ≤ r has at least one solution un(�∗) with
|un(�∗)| ≤ r.

It can be easily seen that if ! ∈ 
θ(n; r) and |u| ≤ r, then _Ln(�∗ +u) < 0.
On the other hand, for ! ∈ 
θ(n; r) and |u| ≤ r,

Ln(�∗ + u; !) − Ln(�∗ + un(�); !)

=

∫ 1

0

@

@�
[Ln((�∗ + un(�∗)) + �(u − un(�∗)); !)] d�:

Consequently,

Ln(�∗ + u; !) =

∫ 1

0

_L(�∗ + un(�∗) + �(u − un(�∗)); !)(u − un(�∗)) d�

and

Ln(�∗ + u; !)(u − un(�∗))

=

∫ 1

0

_L(�∗ + un(�∗) + �(u − un(�(�∗�Ln(�⊆
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It is easily seen that, by construction, Tn possesses properties I, II and
III.

4. Finally, we prove assertion IV. By expansion (5), we have

|cn(�)Ln(Tn) − cn(�)Ln(�∗) − 
Q(�)c−1
n (�)(Tn − �∗)|

≤ |"n( �T ; �∗)
−1
Q (�)| |
Q(�)c−1

n (�)(Tn − �∗)| (8)

and lim sup
n→∞

Qn
θ{|"n( �Tn; �∗)| ≥ �} = 0, ∀� > 0, which follows directly from

the relation

{| �Tn − �∗| ≤ r} ∩
{

sup
{y:|y−θ∗|≤r}

|"n(y; �∗)| < �
}

⊂ {|"n( �Tn; �∗)| < �}:

Denote Xn := cn(�)(Ln(Tn) − Ln(�∗)), Yn := 
Q(�)c−1
n (�)(Tn − �∗) and

Zn := |"n( �Tn; �∗)
−1
Q |. Then inequality (8) takes the form

|Xn − Yn| ≤ Zn|Yn|:

It is well-known that if Xn converges weakly to X (Xn
w

∇ }

82



(sup c)1 the function �Q(
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On the other hand,

Qn
θ - lim

n→∞
c2
n(�)Ln(T̂n) = 0

and hence,
Qn

θ - lim
n→∞

�Q(�; T̂n) = 0: (11)

Assume now that equality (9) fails too. Then one can choose " > 0 such
that

lim
n→∞

Qn
θ

{
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Evidently, for any �, we have 
θ
n ⊂ An, where the set 
θ

n is de�ned in
item 3 of the proof of Theorem 1.

Since under the conditions of Theorem 1, Qn
θ{
θ

n} → 1, for any � we have

lim
n→∞

Qn
θ{An} = 1:

For each n ≥ 1, introduce the sets:

Sn = {T̃n : T̃n is Fn-measurable; Ln

85



The �rst and the second terms on the right-hand side converge to zero
by virtue of equalities (13) and (14).

Remark 2. If the conditions of Corollary 1 are satis�ed, then by virtue of
Theorem 1, IV (ii), there exists an estimator T = {Tn}n≥1 such that

Tn = �∗ +
Ln(�∗)


Q(�)
+ Rn(�); (15)

c−1
n (�)Rn(�)

Qn
θ−→ 0:

If �∗ = bQ(�) = � and the distribution � from Theorem 1, f), is Gaussian,
then we obtain a consistent, linear, asymptotically normal estimator.
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ON A GENERALIZATION OF KHINCHIN’S THEOREM

V. BERIKASHVILI, G. GIORGOBIANI, V. KVARATSKHELIA

Abstract. A generalization of Khinchin’s theorem for weakly correlated random elements
with values in Banach spaces lp, 1 � p <1 is presented without proof.

The purpose of this paper is to generalize the following Khinchin’s theorem, which was
published in 1928 in the journal of the French Academy of Sciences [1]. The concepts and
background information about probability distributions in in�nite-dimensional spaces, neces-
sary for further discussion, can be found in [2].

Let �1; �2; : : : ; �n; : : : be a sequence of real random variables, de�ned on the probability space

(
;F;P) with �nite mathematical expectations E �n <1; denote Sn =
n∑
i=1

�i; n = 1; 2; : : :. We

say that the given sequence of random variables satis�es the Law of Large Numbers (LLN), if
the sequence fS
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2 V. BERIKASHVILI, G. GIORGOBIANI, V. KVARATSKHELIA

It is said that a random element � with values in X has a weak p-order, p > 0, if E jhx�; �ijp <
1 for every x� 2 X�. If a random element � has a weak p-order, p > 1, then the expectation E �
exists and is de�ned as the Pettis integral
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Lemma 2.
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4 V. BERIKASHVILI, G. GIORGOBIANI, V. KVARATSKHELIA

Corollary 6. Let �1; �2; : : : ; �n; : : : be a sequence of weak second order random elements with
values in lp; 1 � p � 2; and let the covariance operators Rn � R�n satisfy the condition

�pn �
1∑
k=1

hek; Rnekip=2 <1; n = 1; 2; : : : :

If

lim
n!1

1

n

(
n∑
i=1

�pi

)2=p

= 0; (8)

then the sequence �1; �2; : : : ; �n; : : : satis�es the LLN.

If the random elements are pairwise independent (or not correlated), then obviously we can

assume that
n�1∑
i=0

g(i) = 1 for any positive integer n. Thus Theorem 3 implies the following

Corollary 7. Let �1; �2; : : : ; �n; : : : be a sequence of pairwise independent weak second order
random elements with values in lp; 1 � p < 1, and let for any positive integer n covariance
operators Rn � R�n satisfy (3.2).

If

lim
n!1

1

n2

(
n∑
i=1

�si

)2=s

= 0; where s = minf2; pg;

then the sequence �1; �2; : : : ; �n; : : : satis�es the LLN.

In particular, for the case of a separable Hilbert space we have

Corollary 8. Let �1; �2; : : : ; �n; : : : be a sequence of pairwise independent strong second order
random elements with values in a separable Hilbert space and let

lim
n!1

1

n2

n∑
i=1

tr(Ri) = 0:

Then the sequence �1; �2; : : : ; �n; : : : satis�es the LLN.

Naturally the question arises about the validity of the main theorem of the paper in the
general Banach space. Does it remain true at least in the case of Banach spaces with an
unconditional basis and a �nite cotype? The answer to this question is not yet known to us.
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Real Options Valuation using Machine Learning Methods 
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Lastly, commonly used option pricing method is Monte Carlo simulation where numerous random paths for 

the price of an underlying asset are generated, each having an associated payoff. Then present value of 

payoffs is computed, and their average becomes an option price that values in all simulated scenarios. Just 

like Binomial Option Pricing model, this method can incorporate any option payoff and dynamically 

introduced inputs. Moreover, this method is not restricted to a single or any distribution of underlying asset 

unlike models with closed-form solutions as given by the Black-Scholes. All that gives Monte Carlo 

simulation substantial number of use-case in real-life applications. Main disadvantage of the method stays 

to be heavy computational load as it requires a large number of simulations to improve average accuracy. 

Next section in this paper introduces more recent approach to option pricing using artificial intelligence, 

mainly, machine learning (ML) methods. Using same or more number of inputs as in classical options pricing 

methodologies ML methods can be trained from both simulated and historical data to “learn” either 

observed option price or theoretical one given by option pricing method of our choice. Success of ML model 

will depend on quality of training data and its properties for generalization among other things. In case of 

creating successful ML model that accurately predicts option prices on out-of-sample data, one can 

conclude that disadvantages of classical option 
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Above figure suggests that ML models can be used to price options, and in this section similar experiment is 

carried out now using actual data instead of simulated one for illustrative purposes. 

Using daily prices for Nasdaq futures starting from earliest available date as of 19 Sep 2001, at-the-money 

call and put prices are computed using following input parameters: 

- annual standard deviation of continuously compounded returns as a volatility input, 

- annual risk-free rate of 3%, and 

- time to expiration of 20 trading days. 

Code snippet below shows functions used to compute option prices for Nasdaq Futures data till most recent 

date as of time of writing, 23 Dec 2022. 

Code Snippet 1 The Black-Scholes call and put prices, source https://www.codearmo.com/python-tutorial/options-trading-black-
scholes-model 

 

Figure below shows complete dataset used for training and testing of ML models; this includes historical 

data of Nasdaq Futures as well as calculated option prices using formulas in Code Snippet 1. 

Figure 3 Nasdaq futures historical prices and option prices by The Black-Scholes (BS) model 

https://www.codearmo.com/python-tutorial/options-trading-black-scholes-model
https://www.codearmo.com/python-tutorial/options-trading-black-scholes-model
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Despite high volatility in times series, most recent 5% of complete data was selected as out-of-sample for 

testing purposes. Out of most common and 
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- gamma: starting from .01, till 1, with steps of .01 

It’s worth noting that default configuration for Randomized Grid Search has maximum number of iterations 

set to 10 and k-fold cross-validation set to 5 folds. Consequently, all models above will get 5-fold cross 

validation and 10 randomly chosen parameter combinations. Only exception is MLP as it only has 9 possible 

parameter combinations to search from, in which case exhaustive search will be implemented. It’s 

important to note that there is no right architecture choice for neural networks in general, not so even for 
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derived by Game Theory models and then biases valuation even further. In this section, option to expand is 

computed for simulated investment projects data and machine learning models configured in previous 

section are trained to predict expansion option prices on unseen data. If concept of pricing real options with 

ML methods is proven, then training ML models 
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Obviously, SVMs didn’t lend themselves to accurately predict real option prices in the example but looking 

at the graph below excluding SVMs, it’s clear that all other ML models seem to predict option prices very 

closely. 

Figure 6 Prediction error for ML models on price of option to expand, excluding SVMs from the mix 

 

Finally, let’s look at average error and other prediction metrics in the table below. 

Table 2 Options to expand pricing, prediction errors 

 

metric knn_expand mlp_expand lgb_expand svr_expand

average error 3.09 1.93 0.26 24.03

min error 0.00 0.00 0.00 0.00

max error 16.36 8.80 2.45 131.65

max neg error -16.36 -8.80 -2.45 -131.65

max pos error 12.81 6.12 1.48 130.13
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